
Circular Queue

Data Structure

• A circular queue is an abstract data type that contains

a collection of data which allows addition of data at

the end of the queue and removal of data at the

beginning of the queue. Circular queues have a fixed

size.

• Circular queue follows FIFO principle. Queue items

are added at the rear end and the items are deleted at

front end of the circular queue.

Abstract Data Type (ADT)

• An abstract data type (ADT) is a data types where a

data type is defined by its behavior (semantics) from

the point of view of a user of the data, specifically in

terms of possible values, possible operations on data of

this type, and the behavior of these operations.

Example of ADT

• Integers are an ADT, defined as the values …, −2, −1,

0, 1, 2, …, and by the operations of addition,

subtraction, multiplication, and division, together

with greater than, less than, etc., which behave

according to familiar mathematics

• Abstract stack, which is a last-in-first-out structure,

could be defined by three operations: push, that

inserts a data item onto the stack; pop, that removes a

data item from it; and peek or top, that accesses a data

item on top of the stack without removal.

• Abstract queue, which is a first-in-first-out structure,

would also have three operations: enqueue, that

inserts a data item into the queue; dequeue, that

removes the first data item from it; and front, that

accesses and serves the first data item in the queue.

Advantages of Circular Queues

• In Circular Queues we utilize memory efficiently.

because in queue when we delete any element only

front increment by 1, but that position is not used

later. so when we perform more add and delete

operation, memory wastage increase. But in CQ

memory is utilized, if we delete any element that

position is used later, because it is circular.

Implementation of Circular Queue

• Step 1: Include all the header files which are used in

the program and define a constant 'SIZE' with specific

value.

• Step 2: Declare all user defined functions used in

circular queue implementation.

• Step 3: Create a one dimensional array with above

defined SIZE (int cQueue[SIZE])

• Step 4: Define two integer variables 'front' and 'rear' and

initialize both with '-1'. (int front = -1, rear = -1)

• Step 5: Implement main method by displaying menu of

operations list and make suitable function calls to

perform operation selected by the user on circular

queue.

Inserting value into the Circular Queue

In a circular queue, enQueue() is a function which is used

to insert an element into the circular queue. In a circular

queue, the new element is always inserted

at rear position. The enQueue() function takes one

integer value as parameter and inserts that value into the

circular queue. We can use the following steps to insert an

element into the circular queue...

Step 1: Check whether queue is FULL.

((rear == SIZE-1 && front == 0) || (front == rear+1))

Step 2: If it is FULL, then

display "Queue is FULL!!!

Insertion is not possible!!!" and terminate the function.

Step 3: If it is NOT FULL, then check

rear == SIZE - 1 && front != 0

if it is TRUE, then set rear = -1.

Step 4: Increment rear value by one (rear++),

set queue[rear] = value and check

'front == -1' if it is TRUE, then set front = 0.

Deleting a value from Circular Queue

• In a circular queue, deQueue() is a function used to

delete an element from the circular queue. In a

circular queue, the element is always deleted

from front position. The deQueue() function doesn't

take any value as parameter. We can use the following

steps to delete an element from the circular queue...

Step 1: Check whether queue is EMPTY.

(front == -1 && rear == -1)

Step 2: If it is EMPTY, then display "Queue is

EMPTY!!! Deletion is not possible!!!" and terminate

the function.

• Step 3: If it is NOT EMPTY, then display queue[front] as

deleted element and increment the front value by one

(front ++). Then check whether front == SIZE, if it

is TRUE, then set front = 0. Then check whether

both front - 1 and rear are equal (front -1 == rear), if

it TRUE, then set both front and rear to '-1'

(front = rear = -1).

Displays elements of a Circular Queue

Step 1: Check whether queue is EMPTY. (front == -1)

Step 2: If it is EMPTY, then display "Queue is

EMPTY!!!" and terminate the function.

Step 3: If it is NOT EMPTY, then define an integer

variable 'i' and set 'i = front'.

Step 4: Check whether 'front <= rear', if it is TRUE,

then display 'queue[i]' value and increment 'i' value

by one (i++). Repeat the same until 'i <= rear'

becomes FALSE.

Step 5: If 'front <= rear' is FALSE, then display

'queue[i]' value and increment 'i' value by one (i++).

Repeat the same until'i <= SIZE - 1' becomes FALSE.

• Step 6: Set i to 0.

• Step 7: Again display 'cQueue[i]' value and

increment i value by one (i++). Repeat the same until

'i <= rear' becomes FALSE.

Program to implement Circular Queue

using Array

#include<stdio.h>

#include<conio.h>

#define SIZE 5

void enQueue(int);

void deQueue();

void display();

int cQueue[SIZE], front = -1, rear = -1;

void enQueue(int value)

{

if((front == 0 && rear == SIZE - 1) || (front == rear+1))

{

printf("Circular Queue is Full. Insertion not possible");

}

else

{

if(rear == SIZE-1 && front != 0)

rear = -1;

cQueue[++rear] = value;

printf("\nInsertion Success!!!\n");

if(front == -1)

front = 0;

} }

void deQueue()

{

if(front == -1 && rear == -1)

printf("\nCircular Queue is Empty! Deletion is not

possible!!!\n");

else {

printf("\nDeleted element %d\n",cQueue[front++]);

if(front == SIZE)

front = 0;

if(front-1 == rear)

front = rear = -1;

}

}

void display()

{

if(front == -1)

printf("Circular Queue is Empty.");

Else

{

int i = front;

printf("Circular Queue Elements are");

if(front <= rear)

{

while(i <= rear)

printf("%d",cQueue[i++]);

}

• else

• {

• while(i <= SIZE - 1)

• printf("%d", cQueue[i++]);

• i = 0;

• while(i <= rear)

• printf("%d",cQueue[i++]);

• } } }

