In-Service Course
(Spell I)
Venue:
IIT Gandhinagar

Study Material

Solving Taylor Series With Python

Prepared by:
Navneet Sadh
PGT CS,KV KOKRAJHAR

Let's learn about the problem first.

James Gregory	Brook Taylor	Colin Maclaurin	
Did the Formulation	Formally Introduced	Used a special case	

Faces of Taylor Series

Plotting the Graph of $\operatorname{Sin}(x)$: With variation in no. of terms

On your left you can see various graphs. Each one of them are plotted with increasing order of approximation.
i.e. when we increase the number of terms.

By this we can conclude that graph becomes accurate when n approaches infinite.

That's why it is also called 'infinite series'

Too much information?

No problem now we'll see the basic equation.

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}
$$

On the R.H.S the equation

Calling the function $\sin (x)$: Only two inputs are needed x, n $\sin (x, n)$
$x=$ Phase
Definition of factorial (\mathbf{x}):

```
n=no. of terms
```

Definition of $\sin (x)$:
def $\sin (x, n)$:
sine $=0$
for i in range(n):
sign $=(-1)^{* *}{ }^{*}$
sine $=$ sine +
$\left(\left(x^{* *}(2.0 * i+1)\right) /\right.$
factorial (2*i+1))*sign
return sine

```
def factorial(n):
        if n > 1:
        return n *
    factorial(n-1)
    return 1
```


Observations:

1. For loop will run n no. of times
2. Power of x will increase by 2 i.e. $1,3,5,7 \ldots .$.
3. Each new term will have opposite sign

Your Turn

Solve the following series using Python Function

1. e^{x}
2. $\tan ^{-1} x$
3. $\cos x$

Thank You.

