KV MUZAFFARPUR FS

AUTUMN BREAK
HOLIDAY HOMEWORK

CLASS VIII C \& E

Q1. Classify the following polynomials as monomials, binomials, trinomials. Which polynomials do not fit in any of these categories?
$x+y, 1000, x+x^{2}+x^{3}+x^{4}, 7+y+5 x, 2 y-3 y^{2}, 2 y-3 y^{2}+4 y^{3}, 5 x-4 y+3 x y, 4 z-15 z^{2}$, ab+bc+cd+da, pqr, 2p+3q

Q2.Add the following
(i) $\mathrm{ab}-\mathrm{bc}, \mathrm{bc}-\mathrm{ca}$ and $\mathrm{ca}-\mathrm{ab}$
(ii) a - b +ab, b- c+bc and c-a +ac
(iii) $\mathrm{I}^{2}+\mathrm{m}^{2}, \mathrm{~m}^{2}+\mathrm{n}^{2}, \mathrm{n}^{2}+1^{2}$ and $21 \mathrm{~m}+2 \mathrm{mn}+2 \mathrm{nl}$

Q3. Subtract $4 a-7 a b+3 b+12$ from 12a -9ab +5b -3
Q4. Subtract $3 x y+5 y z-7 z x$ from $5 x y-2 y z-2 z x+10 x y z$.
Q5. Find the product of the following pairs:-
(i) $4,7 \mathrm{p}$
(ii) $-5 p, 9 p$
(iii) $8 \mathrm{p}, 0$

Q6. Find the areas of rectangles with the following pairs of monomials as their lengths and breaths respectively.
(i) $10 \mathrm{~m} \& 5 \mathrm{n}$
(ii) $20 x^{2} \& 5 y^{2}$
(iii) $3 m n p$ \& $4 n p$
(iv) $7 a b c \& 12$ bcd

Q7.Obtain the volume of rectangular boxes with the following length , breath and height respectively.
(i) $5 \mathrm{a} \cdot 3 \mathrm{a}^{2}, 7 \mathrm{a}^{4}$
(ii) $2 p, 4 q, 8 r$
(iii) $a, 7 b, 8 c$
(iv) $x y, y z, z x$

Q8. Obtain the product of the following:-
(i) $\mathrm{ab}, \mathrm{bc}, \mathrm{ca}$
(ii) $a,-a^{2}, a^{3}$
(iii) $8,4 y, 8 y^{2}, 12 y^{4}$
(iv) $A, 2 b 3 c 4 d$

Q9. A flooring tile has the shape of a parallelogram whose base is $\mathbf{2 4} \mathrm{cm}$ and the corresponding height is $\mathbf{1 0} \mathbf{~ c m}$. How many such tiles are required to cover a floor of area $1080 \mathrm{~m}^{2}$.

Q10. The area of a trapezium is $34 \mathrm{~cm}^{2}$ and the length of one of the parallel sides is $\mathbf{1 0} \mathrm{cm}$ and its height is 4 cm . Find the length of the other parallel side.

