Informatics Practices ii‘;‘i%d;é
Curriculum

Class XII (CBSE Board) 2021-22

Data Handling using Pandas
UNIT-1: & Data Visualization

Chapter: 1
Data Handling using Pandas-I
(Working with Series)

D
ﬁ Visit www.ip4you.blogspot.com for more.... 1

Open Teaching-Learning Material

Authored By:- Rajesh Kumar Mishra, PGT (Comp.Sc.)
Kendriya Vidyalaya Khanapara, Guwahati (Assam)
e-mail : rkmalld@gmail.com

Expected Learning Outcome:

CBSE Syllabus (2021-22) Covered in this presentation:

[0 Introduction to Python libraries- Pandas, Matplotlib.
[0 Data structures in Pandas - Series and data frames.

[0 Series: Creation of series from ndarray, dictionary, scalar value;
mathematical operations; series attributes, head and tail functions;
selection, indexing and slicing.

In this presentation you will learn about data handling using
Pandas and its basic concepts like...

[0 What are Python libraries -= Numpy, Pandas and Matplotlib.
[0 What are Data structures in Pandas - Series & data frames.
How to work with Series:

[0 How to create series from Numpy Array, dictionary, scalar value etc.
and knowing Series attributes.

[0 How to apply mathematical operations on Series.

[0 How to apply head and tail functions, selection, indexing and slicing
operations.

Introduction to Python Libraries?

0 In any Programming language, the term Library or package
refers the collection of ready-to-use modules/functions for a
specific application.

[0 Python offers various libraries containing collection of built-
in functions that can be imported and used in python
program without writing detailed programs for it.

[0 The following three libraries are well known Python libraries
to manipulate, transform and visualize data easily and
efficiently.

e NumPy stands for Numerical Python.

N u m Py e This library is used for Numerical data analysis and
_ Scientific computing

¢ PANDAS is derived from PANel -DAta

o It is high level data manipulation and analysis tool
of Python.

Pandas

eThe Matplotlib library is used for visualization of data.]

\
M a t p | Otl | b oIt offers functions for plotting vast variety of graphs
[

starting from histograms to line plots.

Visit www.ip4you.blogspot.com for more teaching-learning materials...

What is NumPy: (Recap)

[0 NumPy (Numerical Python) is a library consisting of
multidimensional array objects and a collection of functions
for processing those arrays.

[0 Data collection object in NumPy is called Array. It can be
one, two or Multi-dimensional (ndArray).

[0 Using NumPy, mathematical and logical operations on
arrays can be performed.

Python program to create NumPy Array
import numpy as np
creating Single Dimension Array

arl= np.array([1,4,5,6,7]) —i[l 456 7]
print(arl)

#Creating 2-D Array

ar2= np.array([[1,2,3],[4,5,6]]) [[1 2 3]
print(ar2) [4 5 6]]
creating array with range of numbers

ar3= np.arange(5) —>[01 2 3 4]

print(ar3)—

What is PANDAS ?

[0 Pandas is an open-source Python Library P
used for data manipulation and analysis.

[0 The name Pandas is derived from the word
Panel Data - an Econometrics from
Multidimensional data.

0 It was developed in 2008 by Wes McKinney as high
performance, flexible tool for analysis of data.

[0 Using Pandas, we can accomplish five typical steps of
processing and analysis of data— load, prepare,
manipulate, model, and analyze.

Natural

Big Data
a Data Science '}'?Or::%::'%es_

Application

Of Pa n d as Economics

Visit www.ip4you.blogspot.com for more teaching-learning materials...

Features of Pandas:

[l

Pandas Data structures are Fast and efficient in terms
of applicability and functionality.

Data alignment and integrated handling of missing data.

Supports Reshaping and pivoting operations on date
sets.

Supports Label-based slicing, indexing and sub-
setting of large data sets.

Supports various types aggregation and
transformations on grouped data.

Offers conditional selection, merging and joining of
data sets.

Offers Time Series functionality.

Offers import/export features to handle variety of data
source.

How Pandas is different from NumPy?

N Ty Tl W S D T T W S
NumPy and Pandas both deals with bulk data handling and analysis.
You may think what is need of Pandas when NumPy can be used for

data analysis?
Following are some of the differences between Pandas and Numpy

NumpyY

Pandas

Numpy works with numerical
data set called array.

Pandas works with tabular data
like Series and DataFrame

Array contains homogeneous
data sets.

Pandas objects can have different
data types like
float, int, string, datetime etc.

NumPy consumes less
memory as compared to
Pandas.

Pandas consume large memory as
compared to NumPy.

Numpy is capable of
providing multi-dimensional
arrays (ndarray).

Pandas offers 1-D (Series), 2-D
table object (DataFrame) and 3-D
structure called Panel.

Data structure of Pandas

A data structure is a collection of data values and
operations that can be applied to that data. It
enables efficient storage, retrieval and
modification of data.

Pandas offers the following data structures for
data handling and analysis of big data.

- e It is single dimensional data with
Series labeled index.

e [t two-dimensional data with rows
DataFrame and columns like MS-Excel sheet.

e [t Three Dimensional data objects having
multiple sheets of MS-Excel, each
containing rows and columns.

Panel

Visit www.ip4you.blogspot.com for more teaching-learning materials...

How Series is different from DataFrame?

Series is 1-Dimensional structure | DataFrame is 2-Dimensional

i.e. one column value. structure i.e. may have mutiple rows
and columns.

Series is size immutable i.e. DataFrame is size mutable i.e. you

once created you cant add new can add new rows and column or drop

values. Deletion is allowed. existing rows and columns.

Series and DataFrame both are value mutable i.e. you can update modify
index and data value.

Series Data Structure

[0 A Series is a one-dimensional structure with homogeneous
data containing a sequence of values of any data type (int,
float, list, string, etc.)

[0 It contains data values associated with labeled index. Index
may be numeric or other data type. The default numeric
index labels starts from zero, if no index is given.

[0 Pandas Series can be imagined as a column in a spreadsheet.
[0 Series is Size Immutable and Data Mutable.

marks < Name Series Index
0 85
1 90 A Series
Index > < Values . Name
2 70 1 1 =
’ » 2 2 &, Series
3 3 ~ Values
4 4

% Index in series may have duplicate values. W

How to create Series

A series in Pandas can be created using Series() function with optional
parameters for data and index.

<Series Object>= pandas.Series([data=<data set>],

[iIndex=<index set>], [dtype=<datatype>], [name=<series name>])

Where dataset can be a list/Dictionary or any scalar value.

Creating Empty Series

An empty series can be created using Series() without any

parameters. It will create an empty series with default data type as

float64.

#creating empty series
import pandas as pd

s= pd.Series()
print(s)

-

Series([], dtype: float64)

How to create Series

Creating Series with numPy array

A series can be created using numPy array (ndArray), which can be

passed as data in Series() method.

If no index is passed, then by default index will be given as

[0,1,2,3...len(array)-1].

#creating series using Numpy array
import pandas as pd

s= pd.Series(arr)
print(s)

0

1
import numpy as np # e
arr=np.array(['a','b','c','d"']) 3 d

dtyp

Series created g
with default
index starting

#creating series using Numpy array
import pandas as pd

import numpy as np
arr=np.array(['a','b',"'c','d'])
s=pd.Series(arr,index=[100,101,102,103])
print(s)

d
b
<'\\from 0 y
ty e. ObjECt Series)
created with
labeled
100 a 4—\ index)
101 b
i@2auc
103 d
dtype: object

How to create Series

Creating Series with list

A series can be created using list, which can be passed as data in

Series() method.

If no index is given then by default index will be generated as

[0,1,2,3...len(list)-1].

: ; . : Series created i
#creating series using list 0 a Jwith default
import pandas as pd 1 b = index starting
1st=[‘a’,’b’,*c’,*d’] -.2 c —_from 0 !
s=pd.Series(1lst) 3 d
print(s) dtyp)

#creating series using list

import pandas as pd

1st=[5,6,7,8]
s=pd.Series(1lst,index=[‘p’,’q’,’r’,’s’])
print(s)

type: object J Series
labeled

created with

8)
g
-
S
d

L—\ index

type: object

How to create Series

Creating Series with Dictionary

A series can be created using list, which can be passed as data in
Series() method.

The keys of dictionary will be converted as index, when dictionary is
passed as data.

#creating series using dictionary b Amit 45
import pandas as pd Babita 67
dct={‘Amit’ :45,’Babita’ :67,’Chetan’:34,’Dipak’ :78} Chetan 34

s= pd.Series(dct) Dipak 78
print(s) dtype: int64
#creating series using dictionary d Amit 45.0
import pandas as pd Sanjay NaN
dct={ “Amit’:45,°’Babita’:67,’Chetan’:34,°’Dipak”’ :78} Dipak 78.0
s= pd.Series(dct,index=[‘Amit’,’Sanjay’,’Dipak’,’Chetan’]) | Chetan 34.0
print(s) /\\dtype: float64

"

Series created with matching index. NaN (Not a number) value is displayed for not
matching index ‘Sanjay’. Also order of values are similar to order of index.

How to create Series

Creating Series with scalar (constant)

A series can be created with scalar (constant) number, it is repeated

as per index. Single value is displayed with O label, if no index is
given.

Series created)
#cr in ri in with default index

Ergaiie sEries Ustng starting from 0 for
scalar

0O §5 a single scalar
import pandas as pd - dtype: int64 value g
s= pd.Series(5)

print(s)

a b5 fScaIar E
#creating series using scalar b 5 value is
import pandas as pd » c.5 N Fep‘zaffd 4
s=pd.Series(5,index=[‘a’,’b’,’c’,’d’) d S5 \iggef|;n§el_
print(s) dtype: int64 J

-l You can also use NaN values for missing data or index.
Ex. S=Series([4,5,np.NaN,8]) will create a series with NaN.

How to create Series

Creating Series with other methods

a 1
#Creating series with range and for loop b 4
import pandas as pd * C 7
s=pd.Series(range(1,15,3),index=[x for x in ‘abcd’]) d 10
print(s) e 13
dtype: inté64
#Creating series using mathematical functions 2 4 2 is)
import pandas as pd 4 8 multiplied
import numpy as np »5 12 with each
arr= np.array([2,4,6,8]) 8 16 element in
s=pd.Series(data= arr*2, index= arr) dtype: int32 | the numPy
print(s) array.)
2 2
S F /List is

#Creating series with mathematical function 6 6 < repeated
import pandas as pd »2 g since *
Lst=[2,3,4] 3 3 operator
s=pd.Series(data=1st*2, index=1st*2) 6 6 Pe"r_o"?s

: 8 3 replication
prlnt(s) dtype: inte4d i J

Accessing Elements of Series

Data values of a series can be accessed in two ways-
% Indexing: To access a single value at given index.
% Slicing: To assess multiple values (subset) for given range of indexes.

We can use positional index (default index starting with 0) or
labeled index while accessing data through indexing or slicing.

1 Indexing

import pandas as pd
s=pd.Series([10,20,30,40,50],index =['a','b',"'c','d",'e'])
access whole data of series

print (s) ? E ;g

access data with positional index 2 lc 30

print (s[1]) >y d 40
4

access data with labeled index e 50
Print(s[‘b’]) dtype: int64
20

Corresponding positional index is available in 20
memory with labeled index.

Accessing Elements of Series

Slicing- access data with range of index.

The range can be defined as [start : end : step]

in reverse order.

Default step value is 1. Negative step value will cause access of series

import pandas as pd
lst=[10,20,30,40,50,60,70]
idXZ[(aJJJbJJJC),JdJ’feJ,(_F), rga])
s=pd.Series(lst,index =idx)

access whole data of series —5
print (s)

Ul hWNHFHO

10
20
30
40
50
60
70

R O O T o

access data with positional index

print (s[2:6]) —
access data with labeled index
print(s[‘b’:7d”’])

30
40
50
60

—3

D O O

In case of N\
positional

5 20 / /In case of labeled b
index, values are
Co 30 retrieved from START

d 40 to END label. |

index, values

are retrieved
from START to
END-1 index. /

Filtering - conditional access of elements of Series
T e T T T T - T T M T

You can filter/access data values of a series based on defined
condition.

< Applying condition on whole Series: Returns True or False.

< Applying condition on elements: Returns selected values.

import pandas as pd a 5
val=[5,20,10,80,25] b 20
idx=['a'J'b',|c'J'd','el] & 10
s=pd.Series(data=val, index=1idx) d 3(5)
- e
print (s)-— -
applying condition on whole series dbipesintod
print(s>20) a False Returns true or)
applying condition on elements b False ’;%'ﬁgn‘_:’i\g‘r?fi‘d
print (s[s>20]) ~_ g F_?llﬁz N applied on
\ d 80 " T whole series.
e 25 dtype: bool
dtype: int64

Any single conditional expression with Relational operators (>,<,=,!=,>=,<=)
can be applied on series.

Modifying elements of Series

You can modify data value of corresponding index by providing index/
position. To modify values in a range of indexes, slicing can be used.
Series[index] = <new value>
Series[start : end] = <new value>

Series.index = <new index values> E ;8
import pandas as pd c 30
1st=[10,20,30,40,50] - =
idX=[ra)JJb),)C1,)dj,reJ]) e 50
s=pd.Series(1lst,index =idx) a 100

modifyng single value b 20
s[‘a’]=100 S
modifying multiple values __Ll—"d >3
S[‘CJ : g E’M a 5
print(s) p 100
#modifying index q 20
S‘indeX=[rp)’)qJ’)rJ,Js),JtJ] r §5
print(s) —a-f g

Series Attributes

[0 Once series has been created, you can access certain
properties of aeries through defined attributes.
[0 You can access series attributes as <Series>.<attribute>
[0 Some commonly used attributes are-
Attribute Purpose
name To assign name to series.
index.name | To assign name to index of series.
values Returns data values of series as ndarray.
index Returns index labels of series.
Size Returns the size (number of data items) of series.
shape Returns shape of series as tuple
hasnans Returns true if series has NaN value otherwise false.
dtype Returns data type of series i.e. int32,int64,float64 etc.
empty Returns true if series is empty otherwise false.

Series Attributes- Example

import pandas as pd
import numpy as np
lst=[4,5,np.NaN,7,8,9]
idx=["a", "'b", " ,"'d , e","F"]
s= pd.Series(1lst, index=idx)
S.name="MySeries"
S.index.name="SNo"

print(s)
print(s.size)

=

print(s.shape) —

print(s.hasnans) —

print(s.dtype) —

print(s.empty) —

print(s.values) —

print(s.index) —

Index Name]
/

SNo

a 4.0

b 5.0 Series Name]
C NaN

d 7.0

e 8.0

s 9.0

Name: MySeries, dtype: float64
6

(6,)

True

float64

False

[4. 5. nan 7. 8. 9.]
Index(['a“,'b,'c,'d", e ,"f'],
dtype="object', name='SNo"')

Visit www.ip4you.blogspot.com for more teaching-learning materials...

Series Methods

[0 Once series has been created, you can apply various methods to
perform different operations on series.

[0 Some commonly used methods are-

Methods Purpose
head() Returns top 5 values of series, if no value is given.(default 5)
tail() Returns bottom 5 values of series, if no value is given.(default 5)
count() Returns counting of not-NaN values in series. (ignores NaN values)

% The following Mathematical methods are applicable on numeric series only.

min() Returns minimum value of the series.

max() Returns maximum value of the series.

sum() Returns total of value of the series.

add() Adds a scalar (constant) value or another series.

sub() Subtracts a scalar (constant) value or another series.

mul() Multiplies series with scalar (constant) values or another series.

div() Devides series with scalar (constant) values or another series.

Series Methods- Example

a 4
b 5
)c 6 6
d 7 ’a 4
e 8 b 5
f 9 ///i;’S 6
IC : int64
import pandas as pd & ype8 th

import numpy as np
1st=[4,5,6,7,8,9]

idx=['a','b"','c",'d’
s= pd.Series(1lst,

iNdgx=1

print(s.
print(s.
print(s.
print(s.
print(s.

11: 9
dtype: int64

i
39
d - 9
b 10
C g [§
d 12
A7 @ 13
i 14

print(s)
count())
head(3))
tail(2))
min())
max())
sum()) ”””’,,,,,,,,

print(s.
print(s.add(5))

dtype: int64

Mathematical operations on Series

You can perform mathematical operations on series in two ways.
[0 Using operators : +, - ,*, /, //, % etc.
[0 Using Methods: add(), sub(), mul(), div() etc.

Mathematical operations can be two types-
[0 Manipulating Series with scalar (constant) value:

When a series is manipulated with a constant number then

mathematical operation is applied with each element of the
series (Vector arithmetic).

[0 Manipulating two Series:

When mathematical operation is applied on two series then
operation is performed on matching index. The NaN value
will be produced for non-matching/missing value.

You can use fill_value parameter to avoid NaN result for non-matching values.
sl.add(s2, fill_value=0) with assume 0 value for missing values.

Mathematical operations on Series

[0 Manipulating Series with scalar (constant) value:

a 4
b 5
C 6
> d 7 a 9
S b 10
f 9 e it
dtype: inté64 d 12
e 13
import pandas as pd £ 14 /All _elements Of\
inport. munpy as ny R
1st=[4,5,6,7,8,9] a 9 by 5.
idx=['a','b','c','d','e',"f"] b 10 operator + and
s= pd.Series(lst, index=idx) c 11 \?V?I?(?)gggz
print(s) d 12 Qamz result.)
#applying arithmetic operation e e 13
print(s.add(5)) / f 14
print(s+5) dtype: int64

Mathematical operations on Series

[0 Manipulating two Series:

import pandas as pd

import numpy as np

sl= pd.Series([4,5,6,7,8], index=['a','b','c','d',"'e"])

s2= pd.Series([10,12,15,18,20], index=['a','p','b','q','c'])
#applying arithmetic operation

print(sl.add(s2)) # print(sl+s2)
a 4 a 10 a 14.0
b 5 D 12 b 20.0
C 6 + b 15 2 C 26.0
d 7 q 18 d NaN
e 8 c 20 e NaN
dtype: int64 dtype: inté4 p NaN
Series: sl Series: s2 q NaN
- : dtype: float64
You can use fill_value parameter to avoid 7

NaN result for non-matching values.
sl.add(s2, fill _value=0)
will assume 0 value for missing values.

Matching index are added and
NaN value is generated for
missing/non-matching indexes.

Mathematical operations on Series

[0 Manipulating two Series:

Index S1 S2 Sl.add(s2,
Index S1 S2 Sl.add(S2) fill_value(0)

a 4 10 |14.0 a 4 |10 |14.0
b 5 15 |20.0 b 5 15 [20.0
C 6 20 |[26.0 C 6 20 |26.0
d 7 - NaN d 7 |0 7.0
e 8 = NaN e 8 0 8.0
D - 12 | NaN P 0 12 112.0
q - *18 NaN q 0 18 |[18.0
print(sl.add(s2)) f
OR print(sl.add(s2, fill value=0))

Print(sl+s2)

You can apply other methods like sub(), mul(), div() to perform subtraction,
multiplication and division operation respectively.

“Some of the brightest

minds in the country
can be found on

the last benches
of the classroom.”

— Dr. APJ Abdul Kalam

[j Visit www.ip4you.blogspot.com for more....aj

